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[1] We describe a method that retrieves surface photosynthetically active radiation (PAR)
and its direct and diffuse components from the Surface and Atmospheric Radiation Budget
(SARB) product of Clouds and the Earth’s Radiant Energy System (CERES). The
shortwave spectrum in the SARB Edition 2 is calculated in 15 bands, 4 of which are used to
develop the PAR, in conjunction with the look-up tables described in this paper. We apply
these look-up tables to existing CERES Terra Edition 2 products. The new retrieved surface
PAR is validated with LI-COR PAR measurements at seven Surface Radiation Budget
Network (SURFRAD) sites using data from March 2000 to June 2005. The relative bias of
retrieved all-sky PAR at the SURFRAD sites is 4.6% (positive sign indicating retrieval
exceeds measurement), and 54% of the all-sky samples are within the ±10% uncertainty of
the LI-COR PARmeasurements. The satellite field-of-view (FOV) is more representative of
the ground instrument FOV under clear conditions, so 89% of clear-sky retrievals are
within the uncertainty of the LI-COR PARmeasurements at SURFRAD sites with positive
biases at most sites. The retrieved PAR is also validated at the Atmospheric Radiation
Measurement (ARM) Southern Great Plains Central Facility (CF) site using data from
October 2003 to June 2004 for those FOVs having both LI-COR and Rotating
Shadowband Spectroradiometer (RSS) ground measurements; for this small domain, all-
sky relative biases are again positive (1.9%) for LI-COR but negative (�4.2%) for RSS.
The direct-to-diffuse ratio derived from CERES is smaller than that from RSS for
both clear and cloudy conditions. CERES also retrieves the broadband shortwave
insolation, and the relative biases for the broadband retrievals are much less than those
for PAR at the above sites. It appears that some of the ground-based measurements of
PAR do not have the fidelity of those for broadband shortwave insolation.
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1. Introduction

[2] Nearly all living things depend on energy produced
from photosynthesis for their nourishment, making photo-
synthesis vital to life on Earth. In the photosynthesis
process, radiative energy from sunlight is converted to
chemical energy by using CO2 from the atmosphere. Solar
energy in the spectrum of 400–700 nm, the so-called
photosynthetically active radiation (PAR), plays a very
important role in photosynthesis. The intensity of PAR
affects the rate of photosynthesis, and hence also the carbon
sequestration by ecosystems. Therefore PAR is a key
variable for modeling global gross and net primary produc-

tion. This study defines PAR as the downwelling solar
irradiance from 400–700 nm at the surface.
[3] Surface PAR has been calculated from satellite

measurements. Eck and Dye [1991] estimated monthly
mean surface PAR from Total Ozone Mapping Spectrometer
(TOMS), which typically takes one measurement per day at
a spatial resolution of 500 km. They first calculated clear
sky surface PAR from a parameterization accounting for
ozone absorption, Rayleigh scattering, and aerosol scatter-
ing. A constant total column ozone of 300 Dobson Unit
(DU) and a constant aerosol optical depth of 0.2 were
assumed for all locations and months. They then used
radiance from the 370 nm channel on TOMS to correct
the effects of clouds on surface PAR, assuming clouds are
nonabsorbing and their reflectivity is constant across ultra-
violet (UV) and PAR spectrum.
[4] Bishop and Rossow [1991] calculated daily surface

broadband solar flux for the globe using cloud optical
properties derived from 3-hourly International Satellite
Cloud Climatology Project (ISCCP) C1 data. Potter et al.
[1993] then simply applied an adjustment factor of 0.5 to
this solar flux to derive surface PAR (this product is referred
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to as ISCCP-P). The needs of the biological community
have motivated the development of more PAR retrievals.
Pinker and Laszlo [1992a] computed PAR with ISCCP C1
data based on a model originally developed for broadband
surface flux (0.2–4.0 mm) [Pinker and Ewing, 1985; Pinker
and Laszlo, 1992b]. Their model uses the relationship
between broadband atmospheric transmissivity T and top
of atmosphere broadband reflectivity R from radiative
transfer calculations. By matching the model-derived R, as
it pertains to a given atmospheric and surface condition, to
R observed by the satellite, one can determine the
corresponding T, and therefore the surface broadband flux.
They divided the broadband into five spectral intervals:
0.2–0.4 mm, 0.4–0.5 mm, 0.5–0.6 mm, 0.6–0.7 mm, and
0.7–4.0 mm. PAR is obtained simply by summing the
spectral fluxes in the 0.4–0.5 mm, 0.5–0.6 mm, and 0.6–
0.7 mm intervals. The algorithm was applied to ISCCP C1
data at a 250 km resolution and produced the first global
map of monthly PAR (this product is referred to as ISCCP-
PL). Global Energy and Water Cycle Experiment’s
(GEWEX) Surface Radiative Budget (SRB) project also
applies a modified version of this algorithm to ISCCP DX
data and produces PAR at s spatial resolution of 1 degree.
[5] PAR over the ocean was also produced by the Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) [Frouin et
al., 2003]. SeaWiFS views most of the ocean once a day.
The SeaWiFS PAR algorithm used plane-parallel theory and
assumed that the effect of clouds could be decoupled from
the clear atmosphere. SeaWiFS radiances between 412 and
670 nm were used to derive an approximate cloud-surface
system albedo for the 400- to 700-nm interval and then
produce daily averaged surface PAR over the ocean.
[6] The Moderate Resolution Imaging Spectroradiometer

(MODIS) team retrieved the fraction of the incident PAR
absorbed by vegetation, but not PAR itself. The MODIS
net primary production algorithm relies on the three-
hourly, 1� by 1.25� spatial resolution PAR product assimi-
lated at the NASA Global Modeling and Assimilation Office
[Running et al., 2004], though the algorithm itself has a
resolution of 1 km. Therefore a high-resolution PAR product
is urgently needed, especially over land.
[7] Recent studies of photosynthesis highlight the impor-

tance of the diffuse component of PAR, as well as total PAR
[Cohan et al., 2002; Gu et al., 1999, 2002; Niyogi et al.,
2004]. A higher diffuse portion of PAR has been associated
with a higher rate of forest net ecosystem exchange of CO2

[Price and Black, 1990; Hollinger et al., 1994; Fan et al.,
1995; Goulden et al., 1997]. The study of Gu et al. [2002]
using field data pointed out the need to provide diffuse PAR
in addition to total PAR. However, none of the satellite data
sets mentioned earlier provide separate direct and diffuse
components of PAR, except the GEWEX SRB product.
[8] Prior to the mid 1990s, surface PAR measurements

were rare [Bishop et al., 1997]. Therefore it was nearly
impossible to fully validate the satellite-based PAR retriev-
als. Eck and Dye [1991] used pyranometers to validate their
PAR, simply by multiplying 0.48 to convert the pyranom-
eter measured flux to PAR. Comparisons were done for
three sites. The relative difference between monthly mean
PAR from TOMS and that estimated from pyranometers
was less than 6%. Dye and Shibasaki [1995] compared three
PAR retrievals with ground PAR measurements at Moscow.

The comparison indicated that for snow/ice-free months
(April to October, 1987), the RMS errors were 28.1%,
13.7%, and 7.2% for ISCCP-P, ISCCP-PL, and TOMS
PAR respectively. However, as pointed out by Dye and
Shibasaki [1995], such a single site comparison does not
represent the overall quality of the data sets. They stressed the
need to establish long-term, global network of ground-based
PAR sensors to validate and refine different PAR data sets.
[9] PAR is measured at many observational networks

now, such as Surface Radiation Budget Network (SURF-
RAD) [Augustine et al., 2000], U.S. Department of Agri-
culture (USDA) UV network [Bigelow et al., 1998], and
FLUXNET network [Baldocchi et al., 2001]. These net-
works use the LI-COR quantum sensor which has an
interference filter to measure flux in the spectral range of
0.4 to 0.7 mm. The sensor essentially counts the number of
photons with equal weight, regardless of wavelength within
the band. The estimated uncertainty of the measurement for
PAR is about ±10% (J. Augustine, personal communication,
2006). One alternative is the Rotating Shadowband Spec-
troradiometer (RSS). The RSS provides continuous spectral
measurements of total-horizontal, diffuse-horizontal, and
direct-normal fluxes in over 1000 distinct channels from
0.36 to 1.05 mm [Harrison et al., 1999] and has been
deployed at Atmospheric Radiation Measurement (ARM)
Southern Great Plains (SGP) Central Facility (CF) since
May of 2003. Its uncertainty was estimated to be better than
±4% [Kiedron et al., 1999; Harrison et al., 2003]. Routine
RSS measurements are available only at ARM SGP CF (one
site). It is the only publicly available data source with a
substantial record, that we have found, which suffices to
validate both direct and diffuse PAR retrieved with Terra.
[10] The PAR algorithm described here uses aerosol and

cloud input data from the Earth Observing System (EOS).
The new algorithm generates surface PAR by adjusting
spectral fluxes contained in the Surface and Atmospheric
Radiation Budget (SARB) component of the Clouds and the
Earth’s Radiant Energy System (CERES). An algorithm for
surface UV [Su et al., 2005] uses the same resource. While
mainly intended to provide observations of broadband TOA
fluxes, CERES [Wielicki et al., 1996] includes a program to
compute the fluxes at TOA, within the atmosphere and at
the surface, and also to validate with independent ground-
based measurements [Charlock and Alberta, 1996]. SARB
is based on fairly detailed retrievals of aerosol and cloud
optical properties, which are used to partition total PAR into
direct and diffuse components. The SARB broadband
shortwave (SW) is divided into 15 narrow bands, 4 of
which we employ for our PAR calculation. The basic SARB
calculation and its inputs are summarized in section 2. A
high-resolution radiative transfer model is needed to adjust
the spectral fluxes of the SARB bands, this is briefly
described in section 3. Methods of deriving surface PAR
from SARB and decomposing it into direct and diffuse PAR
are presented in section 4. Validations of surface PAR and
the ratio of direct to diffuse PAR are given in section 5.

2. CERES Surface and Atmospheric Radiation
Budget Calculation

[11] The CERES instrument measures radiances in three
channels: a broadband shortwave channel (0.3–5 mm), a
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window channel (8–12 mm), and a total channel (0.3–
100 mm). The CERES radiances are converted to reflected
shortwave (SW), emitted longwave (LW), and emitted
window (WN) TOA fluxes. The large CERES footprints
(�20–40 km) of the TRMM satellite are matched with
smaller Visible Infrared Scanner (VIRS) pixels, and the
large CERES footprints of the Terra and Aqua satellites
are matched with smaller Moderate Resolution Imaging
Spectroradiometer (MODIS) pixels. The SARB product
[Charlock et al., 2006] provides vertical profiles of SW,
LW, andWN channels at the TOA, 70 hPa, 200 hPa, 500 hPa,
and the surface using a fast, plane parallel correlated-k
radiative transfer code [Fu and Liou, 1992, 1993], which
has been highly modified and now dubbed the ‘‘Langley
Fu-Liou code’’ [Rose and Charlock, 2002]. The
HITRAN2000 database was used for the determination of
correlated-k’s in the SW [Kato et al., 1999]. We make a
first-order accounting for inhomogeneous cloud optical
thickness by using the gamma weighted two stream approx-
imation in the SW [Kato et al., 2005]. An external mixture of
aerosols, clouds, and gases is assumed. All-sky aerosol
forcing is determined by running with clouds (if present),
gases, and aerosols, and subtracting the flux from a run with
no aerosols. A theoretical clear-sky aerosol forcing is com-
puted for all footprints as the difference of the cloud-free flux
with aerosols minus the cloud-free flux with no aerosols.
[12] Cloud properties are the most critical inputs for the

calculation. We use retrievals of cloud optical depth, cloud
phase (liquid or ice), effective droplet radius or ice crystal
diameter, liquid water path or ice water path, and effective
radiating temperature (with estimates of cloud top pressure
and geometrical thickness) generated by the CERES team
[Minnis et al., 2002]. They are based on imager data (VIRS
on TRMM, MODIS on Terra and Aqua, and ISCCP B1
geostationary radiances; see Rossow and Schiffer [1991] for
ISCCP) and assume plane-parallel, and single-layered
clouds [Minnis et al., 2002]. All of the various imager
pixels have higher spatial resolution than the coarse foot-
prints of the broadband CERES instrument. The daytime
retrieval technique [Arduini et al., 2002] provides optical
depth from a visible channel over snow-free areas, and the
daytime snow retrieval technique [Platnick et al., 2001]
provides optical depth from a near infrared channel over
snow-covered areas.
[13] Aerosol optical depth (AOD) retrievals are based on

VIRS [Ignatov and Stowe, 2000] when processing CERES
TRMM data, and are based on MODIS [Kaufman et al.,
1997] when processing CERES Terra and Aqua data. Over
the ocean, MOD04 is used for 7 wavelengths; the AOD is
interpolated to the remainder of the spectrum using the
selected aerosol type, as specified below. Over the land,
MOD04 provides AOD at 3 wavelengths, and the MOD04
Angstrom exponent is used to guide the extension over the
spectrum. If the MOD04 instantaneous AOD is not avail-
able (i.e., footprint is overcast), we temporally interpolate
from a file of the MODIS Daily Gridded Aerosol. When
cloudiness in the footprint exceeds 50%, or when there is no
MODIS AOD, we use AOD from the NCAR Model for
Atmospheric Transport and Chemistry (MATCH) assimila-
tion [Collins et al., 2001]. When AOD is taken from
MATCH, we assume it for one wavelength only (630 nm).
MATCH AOD is apportioned to 7 types (small dust, large

dust, soot, soluble organic, insoluble organic, sulfate, and
sea salt) on a daily basis over the globe for all-sky
conditions. Aerosol type is always taken from MATCH
and is used to determine the selection of the asymmetry
factor (g) and the single scattering albedo (SSA). Asymme-
try factors and SSA are taken from the Tegen and Lacis
[1996], or the Optical Properties of Aerosols and Clouds
(OPAC) model [Hess et al., 1998].
[14] Calculations are done for roughly 60,000,000 FOVs

per month. Land surface albedos are retrieved for clear
FOVs by matching a look-up table (LUT) for the 2-stream
code to CERES broadband observations of SW flux at TOA
[Rutan et al., 2006]. The relative spectral shape of the
surface albedo (but not the broadband solution from the
LUT) is specified according to the CERES surface property
maps, which are keyed to International Geophysical Bio-
spherical Project (IGBP) land types. The spectral shapes of
sea ice and snow are assumed from theoretical calculations
[Jin and Stamnes, 1994]. For each location, a monthly
archive of broadband land surface albedo is obtained for
the most favorable, clear-sky viewing geometry. When
cloudy during the month, this archived, clear-sky based
surface albedo is then adjusted to account for the more
diffuse field beneath the cloud. The spectral albedo of the
ocean surface is obtained using a LUT considering SZA,
wind speed, chlorophyll concentration, and cloud/aerosol
optical depth [Jin et al., 2004].
[15] We use daily global ozone profiles from Stratosphere

Monitoring Ozone Blended Analysis (SMOBA) (S.-K.
Yang et al., SMOBA: A 3-dimensional daily ozone analysis
using SBUV/2 and TOVS measurement, 1999, http://
www.cpc.ncep.noaa.gov/products/stratosphere/SMOBA/).
We use temperature and humidity profiles from ECMWF
[Rabier et al., 1998] for TRMM and from the Goddard
Earth Observing System (GEOS-4) [Bloom et al., 2005] for
Terra and Aqua. Surface elevation is taken from the U.S.
Geological Survey GTOPO30 digital elevation model.
[16] CERES PAR product is generated in two main

formats: the instantaneous CERES broadband footprint
(‘‘CRS’’) and the time-averaged grid box (‘‘SYNI’’). For
the SYNI product, a complex algorithm [Young et al., 1998;
Rose et al., 2006] combines and interpolates CERES
measurements with geostationary results for hourly esti-
mates of cloud properties and broadband TOA flux. Of the
24 hourly estimates of cloud properties in a SYNI grid box
for one day, typically 8 will be from 3-hourly narrowband
GOES geostationary retrievals, only 2 will be from MODIS
or VIRS retrievals matched with CERES, and the remainder
(typically 14 of 24) will be interpolated. At this writing,
none of the SYNI products have been released. The archived
Terra Edition 2B CRS and TRMM Edition 2C CRS products
have a dated approximation to ‘‘PAR’’ as 437.5–689.7 nm.
The correct PAR as 400–700 nm will be found on the
forthcoming releases of Terra Edition 2 SYNI, Aqua Edition
2 CRS and SYNI, and all of Edition 3. All results presented
in this paper are from the instantaneous footprint results of
CERES on Terra and a SARB code with the correct PAR.
Of the 15 SW bands in the Langley Fu-Liou code, band 7
(357.5–437.5 nm), band 8 (437.5–497.5 nm), band 9
(497.5–595.5 nm), and band 10 (595.5–689.7 nm) overlap
the PAR spectral range. In this study, we focus on
producing surface PAR and its direct and diffuse compo-
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nents using the outputs of bands 8 and 9 and adjustments to
bands 7 and 10.

3. Radiative Transfer Simulation

[17] In order to provide accurate PAR at the surface, we
must adjust the outputs of band 7 to cover 400–437.5 nm
(hereafter referred to as adjusted band 7), and band 10 to
cover 595.5–700 nm (hereafter referred to as adjusted
band 10). The adjustments are done separately for direct
and diffuse fluxes for band 7 and band 10. Here we define
the adjustment factor g7

dir as the ratio of band 7 direct flux to

adjusted band 7 direct flux, and adjustment factor g7
dif as the

ratio of band 7 diffuse flux to adjusted band 7 diffuse flux.
Similarly, we define adjustment factor g10

dir as the ratio of
band 10 direct flux to adjusted band 10 direct flux, and
adjustment factor g10

dif as the ratio of band 10 diffuse flux to
adjusted band 10 diffuse flux.
[18] We need a high-resolution atmospheric radiative

transfer model to simulate fluxes of band 7, adjusted
band 7, band 10, and adjusted band 10. Here we chose
SBDART (Santa Barbara Discrete ordinate Atmospheric
Radiative Transfer [see Ricchiazzi et al., 1998]). Our goal
is to use SBDART to calculate g7

dir, g7
dif, g10

dir and g10
dif, and

thereby adjust the SARB output to provide surface PAR.
Before we proceed further, we test the agreement between
fluxes of band 7 and band 10 from SBDART and those from
SARB output. We run SBDART and SARB for continental
aerosols [d’Almeida et al., 1991] for the following 360 cases:
(1) cosine of solar zenith angle (SZA) from 0.1 to 1 in steps of
0.1; (2) aerosol optical depth (AOD) from 0.02 to 1.02 in steps
of 0.2; and (3) surface albedo from 0.0 to 1.0 in steps of 0.2.
Figure 1 shows the direct and diffuse fluxes of band 7 from
SBDART and SARB agree very well, with RMS errors of
1.79 W/m2 and 0.79 W/m2, respectively; and the correlation
coefficients are over 0.999. Figure 2 shows the results of
band 10. The RMS errors are 1.75 W/m2 and 1.91 W/m2 for
direct and diffuse fluxes, and the correlation coefficients are
0.999 and 0.998, respectively. Therefore we conclude that
SBDART and SARB simulations are very close. Hereafter
we use SBDART to calculate the direct and diffuse fluxes of
band 7 and adjusted band 7, and the direct and diffuse fluxes
of band 10 and adjusted band 10.
[19] The aerosol optical properties that we use in

SBDART are from the OPAC package [Hess et al., 1998].
The four types used are: maritime clean, continental aver-

Figure 1. SBDART and SARB simulated direct (triangles)
and diffuse (circles) fluxes for band 7.

Figure 2. SBDART and SARB simulated direct (triangles)
and diffuse (circles) fluxes for band 10.

Figure 3. Adjustment factor g7
dir (solid lines) and g7

dif

(dashed lines) as a function of cosine of SZA for continental
average aerosols with optical depth of 0.02 (triangles) and
0.5 (circles). The simulation is for ocean surface and
midlatitude summer atmosphere.
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age, dust, and urban. Their single scattering albedos at
550 nm are: 0.97, 0.89, 0.88, and 0.76, encompassing both
predominatingly scattering and strongly absorbing aerosols.

4. Deriving Surface PAR and Its Direct-to-Diffuse
Ratio From SARB

[20] To provide adjustment factors g7
dir, g7

dif, g10
dir, and g10

dif

for various conditions, we have done some sensitivity
studies using SBDART. Results for g10

dir and g10
dif are the

same as g7
dir and g7

dif, therefore we only present results of
g7
dir and g7

dif here.
[21] For clear sky, we consider the effects of SZA, aerosol

optical depth, aerosol type, surface albedo, precipitable
water, surface elevation, and total column ozone on g7

dir

and g7
dif. Figure 3 shows g7

dir (solid lines) and g7
dif (dashed

lines) as a function of cosine of SZA for continental average
aerosols with optical depth of 0.02 (triangles) and
0.5 (circles). The simulation is done for an ocean surface
and a mid latitude summer atmosphere. Adjustment factors
g7
dir and g7

dif are sensitive to SZA, and decrease as the sun
approaches the horizon. For overhead sun, g7

dir and g7
dif

change by about 3% and 12% when AOD increases from
0.02 to 0.5. Figure 4 shows g7

dif as a function of cosine of
SZA for three surface types: ocean, desert, and snow. The
surface albedo across the PAR spectrum ranges from 0.09 to
0.06 for the ocean, from 0.17 to 0.41 for the desert, and
from 0.96 to 0.64 for the snow. We used continental average
aerosols with optical depth of 0.2 in the simulation. At
a given SZA, g7

dif for snow is about 4% larger than for
ocean, and about 6% larger for snow than for desert. In
contrast to g7

dif, the adjustment factor g7
dir is not sensitive to

surface albedo (not shown). Figure 5 shows g7
dir (solid lines)

and g7
dif (dashed lines) for continental average aerosols

(triangles) and urban aerosols (circles), both with AOD of
0.2, and for an ocean surface. For any SZA, g7

dir and g7
dif

change by only about 0.2% among the different aerosol

types. The adjustment factors g7
dir and g7

dif have negligible
sensitivity to precipitable water, surface elevation, and total
column ozone.
[22] For cloudy sky, we consider the effects of SZA,

cloud optical depth (COD), cloud height, cloud phase (water
or ice), surface albedo, precipitable water, surface elevation,
and total column ozone on adjustment factors g7

dir and g7
dif.

Figure 6 shows g7
dir as a function of cosine of SZA for COD

of 1 and 5. It decreases as the cosine of the SZA decreases.
For larger SZAs and CODs, the direct beam is totally
diminished, so the corresponding g7

dir was not provided in
Figure 6. For algorithm application purpose, the value is
set to one to avoid numerical overflow. Figure 7 shows g7

dif

as a function of cosine of SZA for different CODs, and we
see that like g7

dif for clear conditions the sensitivity to SZA is
relatively modest. The adjustment factor g7

dif for cloudy
skies is somewhat sensitive to surface albedo, but g7

dir for
cloudy skies is not (figures are not shown for economy).
Tests reveal that g7

dir and g7
dif are not significantly sensitive

to cloud height, cloud phase, precipitable water, surface
elevation, or total column ozone.
[23] We can calculate surface direct and diffuse PAR if we

know adjustment factors g7
dir, g7

dif, g10
dir, and g10

dif,

PARdir ¼ Fdir
7

gdir7

þ Fdir
8 þ Fdir

9 þ Fdir
10

gdir10

; ð1Þ

PARdif ¼ F
dif
7

gdif7

þ F
dif
8 þ F

dif
9 þ F

dif
10

gdif10

; ð2Þ

where PARdir and PARdif are the direct and diffuse
component of PAR; F7

dir, F8
dir, F9

dir, and F10
dir are the direct

fluxes for band 7, band 8, band 9, and band 10 from the
15-band SARB SW output; F7

dif, F8
dif, F9

dif, and F10
dif are the

Figure 4. Adjustment factor g7
dif as a function of cosine of

SZA for surface types of ocean, desert, and snow.
Continental average aerosols with optical depth of 0.2 and
midlatitude summer atmosphere were used here.

Figure 5. Adjustment factor g7
dir (solid lines) and g7

dif

(dashed lines) as a function of cosine of SZA for continental
average aerosols (triangles) and urban aerosols (circles)
with same AOD of 0.2. Sea surface albedo and midlatitude
summer atmosphere were used here.
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diffuse fluxes for band 7, band 8, band 9, and band 10. We
construct a direct look-up table (LUT) for g7

dir and g10
dir, and

a diffuse LUT for g7
dif and g10

dif taking into account all the
parameters that they are sensitive to. Specifically, the direct
LUT includes: (1) cosine of SZA from 0.1 to 1 in steps of
0.1; (2) AOD of 0.02, 0.1, 0.2, 0.5, and 1.0; and (3) COD of
1, 5, 10, 20, 40, 60, 100, 200. Also, the diffuse LUT
includes four surface types: ocean, desert, snow, and
vegetation, in addition to all the variables in the direct
LUT. For a given SARB broadband SW calculation, we use
its SZA, AOD, COD, and surface albedo with the direct and
diffuse LUT for g7

dir, g7
dif, g10

dir, and g10
dif, and then obtain the

surface direct PAR and diffuse PAR from equations (1)

and (2). The surface total PAR is the sum of the direct and
diffuse PAR.
[24] As mentioned earlier, some terrestrial ecosystems use

the diffuse radiation more efficiently than the direct radia-
tion, so it is important to provide both direct and diffuse
PAR components. The advantage of our algorithm is that it
calculates the direct and diffuse PAR separately allowing us
to provide the direct to diffuse PAR ratio and the total PAR
in our CRS and SYNI products.

5. Validation

[25] To evaluate this new technique for PAR retrieval
with CERES SARB inputs, we compare results with
ground-based LI-COR measurements from the SURFRAD
network and ARM SGP CF, and the ratio of direct to diffuse
PAR derived from RSS measurements at the ARM SGP CF.
The retrieved PAR (400–700 nm) was obtained by rerun-
ning the Terra Edition 2B CRS algorithm for untuned fluxes
and then applying the new direct and diffuse look-up tables
discussed in section 4.

5.1. Total PAR

[26] SURFRAD was established in 1993 to support
climate research with accurate, continuous, and long-term
measurements of the surface radiation budget over the
United States. Currently seven SURFARD sites are operat-
ing in climatologically diverse regions: Fort Peck, Montana;
Boulder, Colorado; Bondville, Illinois; Goodwin Creek,
Mississippi; Penn State, Pennsylvania; Desert Rock,
Nevada; Sioux Falls, South Dakota. The network measures
upwelling and downwelling shortwave and longwave
broadband fluxes, PAR, erythemal UV, spectral solar, and
meteorological parameters. PAR is measured with LI-COR
quantum sensor and its uncertainty is estimated to be ±10%
(J. Augustine, personal communication, 2006).

Figure 6. Adjustment factor g7
dir as a function of cosine of

SZA for different COD. Sea surface albedo and midlatitude
summer atmosphere were used here.

Figure 7. Adjustment factor g7
dif as a function of cosine of

SZA for different COD. Sea surface albedo and midlatitude
summer atmosphere were used here.

Figure 8. Comparison between SURFRAD observed PAR
with CERES retrieved PAR for Desert Rock, Nevada, for
all-sky condition, using data from March 2000 to June
2005. The total sample number is 1485, and the bias and
RMS error are 4.5 and 35.0 W/m2, respectively.
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[27] The direct and diffuse LUTs presented in section 4
are applied to CERES on Terra from March of 2000 to June
of 2005. Figure 8 shows the observed PAR against CERES
PAR for Desert Rock for all-sky conditions. The mean
observed PAR is 322.3 W/m2, and the mean CERES PAR
is 326.8 W/m2. The RMS error is 35.0 W/m2. Figure 9 is the
same as Figure 8, but for clear sky. The mean observed and
SARB PAR are 364.7 W/m2 and 371.4 W/m2, and the RMS
error is reduced to 13.1 W/m2 for clear-sky conditions. The
all-sky RMS (35.0 W/m2) is much larger because clouds in
the large CERES field of view (about 20 km at nadir) often
differ from those immediately above the ground radiometer.
Clear conditions in Figure 9 were identified with MODIS
pixels within the CERES footprint. If MODIS misses a
cloud and marks a footprint as clear, the signal would be
cases of observed PAR falling much below the retrieved
PAR; a few of these are seen in Figure 9. Table 1 provides
the total sample number, mean observed PAR, mean CERES
PAR, Root Mean Square (RMS) error, bias (CERES minus

observed), and relative bias (bias/observed*100%) for the
seven SURFRAD sites for all-sky and clear-sky conditions.
PAR retrieved from CERES is higher than the SURFRAD
measurements, except for Fort Peck under clear sky. Bond-
ville has the largest relative bias for both all sky (9.3%) and
clear sky (6.7%). Desert Rock has the lowest relative bias
for all sky (1.4%) and Fort Peck has the lowest relative bias
for clear sky (�0.1%).
[28] Snow and ice surfaces are the most challenging

targets for satellite retrievals of SW flux at the surface. To
test the performance of the algorithm over snow/ice surface,
we use broadband surface albedo observed at the SURF-
RAD sites to distinguish low surface albedo (<0.6) and high
surface albedo (�0.6) samples. We further divide all-sky
and clear-sky samples into low- and high-albedo categories.
Results for Fort Peck, presented in Table 2, show the
algorithm overestimates PAR for all-sky conditions and
slightly underestimates PAR for clear-sky conditions for
both low- and high-albedo surfaces. Results from five sites
having both low and high surface albedo records show that
the biases are comparable for low and high albedos.
[29] How many of PAR retrievals fall within the specified

uncertainty of the LI-COR quantum sensor? We calculate
the relative difference of PAR as observed minus CERES
then divided by observed. We define the percentage of
samples with relative difference between a% and b% as

Pa%�b% ¼ 1

N

XN
i¼1

di � 100%
di¼1 a% < Ri 	 b%

di¼0 Ri 	 a% or Ri > b%

�
;

ð3Þ

where Ri is the relative difference of the ith sample, and N is
the total number of samples. Figure 10 shows the sample
percentage distribution in 12 relative difference bins at
Desert Rock for all-sky (solid line) and clear-sky (dashed
line) conditions. For all sky, 80% of the samples (1188 out
of 1485) have relative differences within ±10%; for clear-
sky condition, 98% of the samples (571 out of 583) have
relative differences within ±10%. The percentage of sam-
ples with relative difference between �10% and +10%
(P�10%�+10%) are shown in the last row of Table 1. For
all sky, Penn State has the lowest percentage of samples
(40%) with relative difference within ±10%, and Desert
Rock has the highest percentage (80%). For clear sky,
Bondville has the lowest percentage of samples (72%) with

Figure 9. Comparison between SURFRAD observed PAR
with CERES retrieved PAR for Desert Rock, Nevada, for
clear-sky condition, using data from March 2000 to June
2005. The total sample number is 583, and the bias and
RMS error are 6.7 and 13.1 W/m2, respectively.

Table 1. Total Sample Number, Mean Observed PAR, Mean CERES PAR, RMS Error, Bias, Relative Bias, and Percentage of Samples

With Relative Difference Within ±10% for the Seven SURFRAD Sites for All-Sky and Clear-Sky Conditionsa

Bondville Boulder Desert Rock Fort Peck
Goodwin
Creek Penn State Sioux Falls

All Clear All Clear All Clear All Clear All Clear All Clear All Clear

Number 1076 371 1648 199 1485 583 1901 457 1497 300 1676 200 650 166
Mean observed PAR 223.7 292.4 267.2 299.7 322.3 364.7 224.2 272.2 244.9 304.9 204.6 299.6 232.2 293.5
Mean CERES 244.4 312.2 275.8 304.6 326.8 371.4 229.1 271.6 262.7 318.0 216.6 314.8 241.7 301.0
RMS 51.0 40.6 63.4 18.0 35.0 13.1 41.0 16.1 49.1 17.5 52.0 37.5 42.4 18.7
Bias 20.8 19.8 8.6 4.9 4.5 6.7 4.9 �0.5 17.8 13.1 12.1 15.2 9.4 7.6
Relative bias 9.3 6.7 3.2 1.6 1.4 1.8 2.2 �0.1 7.2 4.3 5.9 5.1 4.0 2.6
P�10%�+10% 45 72 53 97 80 98 55 87 53 97 40 80 54 92

aPAR and RMS error are in W/m2. Bias is CERES minus observed in W/m2, and relative bias is bias/observed �100%.
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relative difference within ±10%, and Desert Rock has the
highest percentage (98%). Over the course of more than five
years, there are over 10,000 validation samples from the
seven SURFRAD sites, with 54% within the PAR measure-
ment uncertainty. Over 2200 samples are taken under clear
sky, and 89% of the clear-sky samples are within the PAR
measurement uncertainty. At all sites, the relative biases of
the respective 5-year ensemble mean retrievals are less than
10%, for both all-sky and clear-sky conditions.
[30] It is useful to compare the discrepancies of retrievals

and observations for surface PAR with those for surface
broadband SW. We present such a comparison for all the
data available from the seven SURFRAD sites in Table 3.
The relative biases (bias divided by the observed) for PAR
retrievals are 4.6% for all sky and 2.9% for clear sky, and
the relative biases for broadband SW retrievals are 0.8% for
all sky and 0.7% for clear sky. The surface downwelling
SW fluxes derived from CERES agree with the observations
much better than the PAR from CERES with observations.
This is not surprising because the LI-COR sensor’s uncer-
tainty (10%) is much larger than that of the SW pyranom-
eter. SURFRAD [Augustine et al., 2000] broadband
measurements adhere to the strict observing and calibration
protocol of the Baseline Surface Radiation Network
[Ohmura et al., 1998]. The large sample (10,563 for all-
sky) ensures that the relative biases for the PAR (4.6%) and
broadband SW (0.8%) are statistically significant. For an
instantaneous FOV however, the discrepancy of the satellite
and ground-based PAR is about the same as the discrepancy
of the satellite and ground-based broadband SW: the relative
PAR RMS error (RMS divided by observed in Table 3) is
20% for all sky, versus the relative broadband SW RMS
error of 19% for all sky. The RMS is mostly a marker of the
space-time discrepancy between the satellite FOV (�20–
40 km) and ground-based measurement at a point (here 15-
min averages). The spatial variation of cloud properties over
a typical instantaneous FOV accounts for the bulk of the
RMS signal in all-sky conditions.
[31] Given the substantial uncertainty quoted for the LI-

COR PAR sensor, we use the more accurate RSS instrument
at ARM SGP CF for additional tests. We integrate the total
spectral fluxes of RSS from 400 nm to 700 nm to produce
the total PAR at CF site. There is also a LI-COR PAR
sensor, which is maintained by the USDA at the CF. We use
data from October 2003 to June 2004 to compare the

CERES PAR with PAR from LI-COR sensor and RSS
(Figure 11). The total sample numbers are 136. The mean
RSS integrated PAR is 245.8 W/m2, and the mean LI-COR
PAR is 231.0 W/m2. The mean CERES PAR is 235.5 W/m2,
which falls in between. Linear regression between CERES
PAR and RSS PAR (LI-COR PAR) yields the slope of 1.03
(0.95) and regression coefficient of 0.93 (0.94). Table 4
provides the RMS errors and biases between CERES PAR
and LI-COR PAR, between CERES PAR and RSS PAR,
and between RSS PAR and LI-COR PAR. The mean
CERES surface downwelling SW flux and the mean pyr-
anometer observed downwelling SW flux, and the RMS
error and bias between them are also included in Table 4.
Here the CERES PAR agrees slightly better with the LI-
COR PAR sensor. Comparing to PAR measurements, the
SW measurements have a smaller relative RMS discrep-
ancies and relative biases with CERES retrievals for both
all-sky and clear-sky conditions, which manifests the results

Table 2. Total Sample Number, Mean Observed PAR, Mean

CERES PAR, RMS Error, Bias, and Relative Bias at Fort Peck for

Low-Albedo (<0.6) and High-Albedo (�0.6) Surfaces Under All-

Sky and Clear-Sky Conditionsa

All Clear

Low High Low High

Number 1582 319 364 93
Mean Obs 236.8 161.5 294.6 184.3
Mean CERES 241.8 166.3 294.4 182.6
RMS 41.5 38.2 15.3 18.9
Bias 5.0 4.8 �0.2 �1.7
Relative Bias 2.1 3.0 �0.1 �0.9

aPAR and RMS error are in W/m2. Bias is CERES minus observed in
W/m2, and relative bias is bias/observed �100%.

Table 3. Total Sample Number, Mean Observed, Mean CERES,

RMS Error, Bias, and Relative Bias for PAR (400–700 nm) and

SW (Broadband) Derived at Seven SURFRAD Sitesa

All Sky Clear Sky

Number 10563 2278
Mean LI-COR observed PAR 244.9 309.9
Mean CERES PAR 256.2 318.8
PAR RMS 49.1 24.1
PAR Bias 11.3 8.9
Relative PAR bias 4.6 2.9
Mean observed SW 571.7 732.1
Mean CERES SW 576.4 726.7
SW RMS 107.8 29.8
SW Bias 4.7 �5.4
Relative SW bias 0.8 0.7

aMean observed, mean CERES, and RMS error are in W/m2. Bias is
CERESminus observed inW/m2, and relative bias is bias/observed�100%.

Figure 10. Sample percentage distribution for 12 relative
difference bins for Desert Rock under all-sky (solid line)
and clear-sky (dashed line) conditions.
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from SURFRAD sites. We also note the relative bias for
PAR at the Central Facility is smaller than that at the
SURFRAD sites (see Table 3). Nevertheless, the errors
between CERES retrieved PAR and the observed PAR are
all within each instrument’s uncertainty. Therefore signifi-
cant improvement in the validation of the satellite retrieved
PAR product for total horizontal flux (rather than the ratio of
separate direct to diffuse components of PAR, as in the next
section) will rely on the availability of more accurate
surface PAR instrumentation.

5.2. Direct and Diffuse PAR

[32] We also derive the ratio of direct to diffuse PAR at
SGP CF from the total and diffuse spectral fluxes of RSS.
Here we use data from July 2003 to June 2004. Figure 12
compares the ratios of direct to diffuse PAR derived from
RSS with those from SARB for clear and cloudy conditions.
The total sample numbers are 270. The mean ratios are 2.59
and 1.93 from RSS and CERES with an RMS error of 1.40.
CERES SARB underestimates the direct to diffuse PAR
ratio, but the relative error of the retrieved ratio for clear
conditions is much less than for cloudy conditions. The
large error for the retrieved ratio in cloudy skies is mostly
due to a fundamental mismatch of the retrieval (a calcula-
tion) and observation in the spatial and temporal domains.
There is only one mean ratio for a given CERES FOV
(�20–30 km in length), and it is based on a maximum of
just three instantaneous radiative transfer calculations, po-
tentially covering a clear portion, a first cloudy portion, and
a second cloudy portion. The observed ratio is the 15-min

mean of the direct flux (which can be large to near zero) to
the 15-min mean of the diffuse flux (which is less than the
direct flux for a clear sky). The observation itself represents
a small area, perhaps just a few square kilometers, when
cloudy. Because the optical properties of clouds are usually
inhomogeneous, the ratio for one cloudy square km can
differ greatly from those in nearby cloudy squares. Since the
retrieved ratio represents such a large area, and is hence
generally smaller than the observed ratio. This space-time
mismatch accounts for most of the bias in the retrieved ratio.
Other factors, such as 3-D effect of clouds, are secondary.

6. Summary and Discussion

[33] The Surface and Atmospheric Radiation Budget
(SARB) product uses retrieved aerosol and cloud optical
properties from the collocated imagers, and aerosol assim-
ilation model to calculate the vertical flux profiles of
shortwave, longwave, and window channels. To fully ex-
ploit the capability of SARB product, we develop look-up
tables to adjust the spectrum discrepancies of its band
7 (357.5–437.4 nm) and band 10 (595.5–689.7 nm) from
PAR spectral range: namely adjust band 7 to spectral range
(400–437.5 nm) and band 10 to spectral range (595.5–
700 nm). The adjustment is done separately for direct and
diffuse fluxes; therefore we provide the ratio of direct to
diffuse PAR, in addition to the total PAR. These look-up
tables are applied to five-year CERES Terra data and the
retrieved surface PAR is validated against SURFRAD
measured PAR. Our algorithm overestimates surface PAR
for both all-sky and clear-sky conditions, except for Fort
Peck under clear-sky condition. Relative bias ranges from
1.4% to 9.3% for all sky, and from �0.1% to 6.7% for clear
sky. For high-reflecting surface, the algorithm underesti-
mates the surface PAR at Bondville, Penn State, and Sioux

Figure 11. Comparison between CERES PAR to RSS
integrated PAR (open circles) and Licor PAR (solid
gradients) at ARM SGP site. The slope between CERES
PAR and RSS integrated PAR is 1.03 (dashed line) and
correlation coefficient is 0.93, and the slope between
CERES PAR and Licor PAR is 0.95 (solid line) and the
correlation coefficient is 0.94.

Table 4. Total Sample Number, Mean LI-COR Observed PAR,

Mean CERES PAR, Mean RSS Observed PAR, and the RMS

Errors, Biases, and Relative Biases of Each Paira

All Sky Clear Sky

Number 136 51
Mean LI-COR observed PAR 231.0 293.7
Mean CERES PAR 235.5 301.4
PAR RMS CERES/LI-COR 38.6 17.8
PAR Bias CERES/LI-COR 4.5 7.7
Relative PAR bias CERES/LI-COR 1.9 2.6
Mean RSS observed PAR 245.8 309.6
PAR RMS CERES/RSS 42.1 14.6
PAR Bias CERES/RSS �10.3 �8.2
Relative PAR bias CERES/LI-COR �4.2 �2.6
RMS LI-COR/RSS 21.4 18.1
Bias LI-COR/RSS �14.8 �15.9
Relative bias 8.7 5.1
Mean observed SW 526.0 686.0
Mean CERES SW 531.6 679.3
SW RMS 63.2 24.0
SW Bias 5.6 6.7
Relative SW bias 1.1 1.0

aThe bottom five rows are the mean observed broadband SW (W/m2),
mean CERES broadband SW (W/m2), RMS error (W/m2), bias (W/m2),
and relative bias (%) for the ARM SGP Central Facility. PAR and RMS
error are in W/m2. Bias is CERES minus observed in W/m2, and relative
bias is bias/observed �100% in %.
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Falls. Nevertheless, the absolute relative biases are compa-
rable for both low- and high-reflecting surfaces. Therefore
we conclude that the algorithm works equally well for snow
and ice surface. We use more than 10,000 samples from
SURFRAD measurements to validate the PAR product, and
54% of these samples are within the ±10% uncertainty of
PAR measurements. There are over 2200 clear-sky samples,
and 89% of them are within the uncertainty of PAR
measurements. Rotating Shadowband Spectroradiometer
(RSS) has been used to validate the ratio of direct to diffuse
PAR at ARM SGP site. The mean ratio derived from
CERES SARB is 1.93 and the mean ratio from RSS is
2.59. Our algorithm underestimates the ratio for both clear
and cloudy conditions.
[34] Finally, the three-hourly SYNI PAR product can

alternatively be used as the input to the MODIS net primary
production model. Also the ratio of direct to diffuse PAR
that is available from CERES SYNI product can help to
quantify the enhancement of terrestrial carbon uptake by
increased proportion of diffuse PAR.
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